Synthesis and biological evaluation of fucoidan-mimetic glycopolymers through cyanoxyl-mediated free-radical polymerization.

نویسندگان

  • Mattias Tengdelius
  • Chyan-Jang Lee
  • Magnus Grenegård
  • May Griffith
  • Peter Påhlsson
  • Peter Konradsson
چکیده

The sulfated marine polysaccharide fucoidan has been reported to have health benefits ranging from antivirus and anticancer properties to modulation of high blood pressure. Hence, they could enhance the biological function of materials for biomedical applications. However, the incorporation of fucoidan into biomaterials has been difficult, possibly due to its complex structure and lack of suitable functional groups for covalent anchoring to biomaterials. We have developed an approach for a rapid synthesis of fucoidan-mimetic glycopolymer chains through cyanoxyl-mediated free-radical polymerization, a method suitable for chain-end functionalizing and subsequent linkage to biomaterials. The resulting sulfated and nonsulfated methacrylamido α-L-fucoside glycopolymers' fucoidan-mimetic properties were studied in HSV-1 infection and platelet activation assays. The sulfated glycopolymer showed similar properties to natural fucoidan in inducing platelet activation and inhibiting HSV-1 binding and entry to cells, thus indicating successful syntheses of fucoidan-mimetic glycopolymers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization

This review summarizes the state of the art in the synthesis of well-defined glycopolymers by Reversible-Deactivation Radical Polymerization (RDRP) from its inception in 1998 until August 2012. Glycopolymers architectures have been successfully synthesized with four major RDRP techniques: Nitroxide-mediated radical polymerization (NMP), cyanoxyl-mediated radical polymerization (CMRP), atom tran...

متن کامل

Synthesis and anticancer properties of fucoidan-mimetic glycopolymer coated gold nanoparticles.

Gold nanoparticles coated with fucoidan-mimetic glycopolymers were synthesized that displayed good colloidal stability and promising anti-cancer properties. Fucoidan mimetic glycopolymers on their own were nontoxic, while glycopolymer coated gold nanoparticles displayed selective cytotoxicity to human colon cancer cell lines (HCT116) while it was non-toxic to mouse fibroblast cells (NIH3T3).

متن کامل

Preparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization

Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...

متن کامل

Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES) as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide na...

متن کامل

Fucoidan-Mimetic Glycopolymers Synthesis and Biomedical Applications

.................................................................................................................. I Populärvetenskaplig Sammanfattning ................................................................. III Acknowledgements ........................................................................................... VII Papers Included in the Thesis ...................................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2014